Search results
Results From The WOW.Com Content Network
A person cannot become resistant to antibiotics. Resistance is a property of the microbe, not a person or other organism infected by a microbe. [14] All types of microbes can develop drug resistance. Thus, there are antibiotic, antifungal, antiviral and antiparasitic resistance. [4] [8] Antibiotic resistance is a subset of antimicrobial resistance.
R-factors are also called a resistance factors or resistance plasmid. They are tiny, circular DNA elements that are self-replicating, that contain antibiotic resistance genes. [ citation needed ] They were first found in Japan in 1959 when it was discovered that some Shigella strains had developed resistance to a number of antibiotics used to ...
Tet Repressor proteins (otherwise known as TetR) are proteins playing an important role in conferring antibiotic resistance to large categories of bacterial species. Tetracycline (Tc) is a broad family of antibiotics to which bacteria have evolved resistance.
A transposable element (TE) (also called a transposon or jumping gene) is a mobile segment of DNA that can sometimes pick up a resistance gene and insert it into a plasmid or chromosome, thereby inducing horizontal gene transfer of antibiotic resistance. [43]
The elevated level of antimicrobial activity by fosfomycin can be attributed to the fact that resistance to this antibiotic in Enterobacteriaceae is chromosomally encoded and not plasmid-mediated. This causes a decreased capacity for survival in the bacteria. Bacteria that are naturally resistant to fosfomycin are less robust and less ...
As well as genetic resistance the SOS response can also promote phenotypic resistance. Here, the genome is preserved whilst other non-genetic factors are altered to enable the bacteria to survive. The SOS dependent tisB-istR toxin-antitoxin system has, for example, been linked to DNA damage-dependent persister cell induction.
Diagram depicting antibiotic resistance through alteration of the antibiotic's target site, modeled after MRSA's resistance to penicillin. Beta-lactam antibiotics permanently inactivate PBP enzymes, which are essential for cell wall synthesis and thus for bacterial life, by permanently binding to their active sites. Some forms of MRSA, however ...
Bacteria are capable of sharing these resistance factors in a process called horizontal gene transfer where resistant bacteria share genetic information that encodes resistance to the naive population. [6] Antibiotic inactivation: bacteria create proteins that can prevent damage caused by antibiotics, they can do this in two ways.