When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    The RobertsonSeymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]

  3. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor.

  4. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.

  5. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    In mathematics, a simple subcubic graph (SSCG) is a finite simple graph in which each vertex has a degree of at most three. Suppose we have a sequence of simple subcubic graphs G 1 , G 2 , ... such that each graph G i has at most i + k vertices (for some integer k ) and for no i < j is G i homeomorphically embeddable into (i.e. is a graph minor ...

  6. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    Neil Robertson and Paul D. Seymour: Wagner's conjecture: graph theory: Now generally known as the graph minor theorem. 1983: Michel Raynaud: Manin–Mumford conjecture: diophantine geometry: The Tate–Voloch conjecture is a quantitative (diophantine approximation) derived conjecture for p-adic varieties. c.1984: Collective work: Smith ...

  7. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    By RobertsonSeymour theorem, any set of finite graphs contains only a finite number of minor-minimal elements. In particular, the set of "yes" instances has a finite number of minor-minimal elements. Given an input graph G, the following "algorithm" solves the above problem: For every minor-minimal element H: If H is a minor of G then return ...

  8. Graph minors theorem - Wikipedia

    en.wikipedia.org/?title=Graph_minors_theorem&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"

  9. Planar cover - Wikipedia

    en.wikipedia.org/wiki/Planar_cover

    Since every minor of a planar graph is itself planar, this gives a planar cover of the minor G. Because the graphs with planar covers are closed under the operation of taking minors, it follows from the RobertsonSeymour theorem that they may be characterized by a finite set of forbidden minors. [7] A graph is a forbidden minor for this ...

  1. Related searches robertson seymour graph minor test of value analysis template sample format

    robertson seymour graph minorrobertson and seymour theorem
    robertson seymour graph theory