Search results
Results From The WOW.Com Content Network
The Robertson–Seymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]
An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.
This states that families of graphs closed under the graph minor operation may be characterized by a finite set of forbidden minors. As part of this work, Robertson and Seymour also proved the graph structure theorem describing the graphs in these families. [6] Additional major results in Robertson's research include the following:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"
Graph minor Wagner's theorem: Outerplanar graphs: K 4 and K 2,3: Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of fixed genus: A finite obstruction set Graph minor Diestel (2000), [1] p. 275: Apex graphs: A finite obstruction set Graph minor [3] Linklessly ...
Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... Robertson–Seymour theorem; S. Shallow minor; Snark (graph ...
If a family F of graphs is closed under taking minors (every minor of a member of F is also in F), then by the Robertson–Seymour theorem F can be characterized as the graphs that do not have any minor in X, where X is a finite set of forbidden minors. [42]