When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    The definition of global minimum point also proceeds similarly. If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗.

  3. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    For commutative rings, ideas of algebraic geometry make it natural to take a "small neighborhood" of a ring to be the localization at a prime ideal. In which case, a property is said to be local if it can be detected from the local rings. For instance, being a flat module over a commutative ring is a local property, but being a free module is not

  4. Minimal surface - Wikipedia

    en.wikipedia.org/wiki/Minimal_surface

    If the projected Gauss map obeys the Cauchy–Riemann equations then either the trace vanishes or every point of M is umbilic, in which case it is a piece of a sphere. The local least area and variational definitions allow extending minimal surfaces to other Riemannian manifolds than . [4]

  5. Four-vertex theorem - Wikipedia

    en.wikipedia.org/wiki/Four-vertex_theorem

    The four-vertex theorem was first proved for convex curves (i.e. curves with strictly positive curvature) in 1909 by Syamadas Mukhopadhyaya. [8] His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has fourth-order contact with the curve; in general the osculating circle has only third-order contact ...

  6. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A turning point of a differentiable function is a point at which the derivative has an isolated zero and changes sign at the point. [2] A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum). A turning point is thus a stationary point, but not all stationary points are turning points.

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]