Ad
related to: in vivo fluorescent imaging reviews and complaints company
Search results
Results From The WOW.Com Content Network
Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy , imaging probes, and spectroscopy .
The paper used three-photon fluorescence microscopy at a spectral excitation window of 1,320 nm to imaging the mouse brain structure and function through the intact skull with high spatial and temporal resolution(The lateral and axial FWHM was 0.96μm and 4.6μm) and large FOVs (hundreds of micrometers), and at substantial depth(>500 μm). This ...
Two-photon excitation microscopy of mouse intestine.Red: actin.Green: cell nuclei.Blue: mucus of goblet cells.Obtained at 780 nm using a Ti-sapphire laser.. Two-photon excitation microscopy (TPEF or 2PEF) is a fluorescence imaging technique that is particularly well-suited to image scattering living tissue of up to about one millimeter in thickness.
Imaging lenses and digital cameras (CCD or CMOS) are used to produce the final image. Live video processing can also be performed to enhance contrast during fluorescence detection and improve signal-to-background ratio. In recent years a number of commercial companies have emerged to offer devices specializing in fluorescence in the NIR ...
Live-cell imaging is the study of living cells using time-lapse microscopy. It is used by scientists to obtain a better understanding of biological function through the study of cellular dynamics. [1] Live-cell imaging was pioneered in the first decade of the 21st century.
Light sheet microscopy (LSM) was developed to allow for fine optical sectioning of thick biological samples without the need for physical sectioning or clearing, which are both time consuming and detrimental to in-vivo imaging. [10] While most fluorescent imaging techniques use aligned illumination and detection axes, LSM utilizes orthogonal axes.
The main advantage of intravital microscopy is that it allows imaging living cells while they are in the true environment of a complex multicellular organism. Thus, intravital microscopy allows researchers to study the behavior of cells in their natural environment or in vivo rather than in a cell culture. Another advantage of intravital ...
Moreover, hyperspectral imaging optimized in the near-infrared is a well-suited tool to study single carbon nanotube photoluminescence in living cells and tissues. In a Scientific Reports paper, Roxbury et al. [30] presents simultaneous imaging of 17 nanotube chiralities, including 12 distinct fluorescent species within