When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]

  3. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.

  4. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula d ( A , B ) = ‖ A B → ‖ . {\displaystyle d(A,B)=\|{\overrightarrow {AB}}\|.}

  5. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .

  6. Schatten norm - Wikipedia

    en.wikipedia.org/wiki/Schatten_norm

    Notice that ‖ ‖ is the Hilbert–Schmidt norm (see Hilbert–Schmidt operator), ‖ ‖ is the trace class norm (see trace class), and ‖ ‖ is the operator norm (see operator norm). Note that the matrix p-norm is often also written as ‖ ⋅ ‖ p {\displaystyle \|\cdot \|_{p}} , but it is not the same as Schatten norm.

  7. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  8. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  9. Field norm - Wikipedia

    en.wikipedia.org/wiki/Field_norm

    is a K-linear transformation of this vector space into itself. The norm, N L/K (α), is defined as the determinant of this linear transformation. [1] If L/K is a Galois extension, one may compute the norm of α ∈ L as the product of all the Galois conjugates of α: