Search results
Results From The WOW.Com Content Network
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]
An operator which has a finite Schatten norm is called a Schatten class operator and the space of such operators is denoted by (,). With this norm, (,) is a Banach space, and a Hilbert space for p = 2.
Provides tools for solving and manipulating symbolic math expressions and performing variable-precision arithmetic. SymPy: Ondřej Čertík 2006 2007 1.13.2: 11 August 2024: Free modified BSD license: Python-based TI-Nspire CAS (Computer Software) Texas Instruments: 2006 2009 5.1.3: 2020 Proprietary: Successor to Derive.
Where is the intersection (i.e. the dot product) of the document (d 2 in the figure to the right) and the query (q in the figure) vectors, ‖ ‖ is the norm of vector d 2, and ‖ ‖ is the norm of vector q. The norm of a vector is calculated as such:
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .
Files in file systems may in most cases be accessed through multiple filenames. For instance in Unix-like systems, the string "/./" can be replaced by "/". In the C standard library, the function realpath() performs this task.
Finsler manifold, where the length of each tangent vector is determined by a norm; Inner product space, normed vector spaces where the norm is given by an inner product; Kolmogorov's normability criterion – Characterization of normable spaces; Locally convex topological vector space – a vector space with a topology defined by convex open sets