When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    A probabilistic proof is one in which an example is shown to exist, with certainty, by using methods of probability theory. Probabilistic proof, like proof by construction, is one of many ways to prove existence theorems. In the probabilistic method, one seeks an object having a given property, starting with a large set of candidates.

  3. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The obvious analogue of the Jacobian conjecture fails if k has characteristic p > 0 even for one variable. The characteristic of a field, if it is not zero, must be prime, so at least 2. The polynomial x − x p has derivative 1 − p x p−1 which is 1 (because px is 0) but it has no inverse function.

  4. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!"

  5. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    First consider the theorem that there are an infinitude of prime numbers. Euclid's proof is constructive. But a common way of simplifying Euclid's proof postulates that, contrary to the assertion in the theorem, there are only a finite number of them, in which case there is a largest one, denoted n.

  6. Scientists Just Discovered an Impossible Particle - AOL

    www.aol.com/lifestyle/scientists-just-discovered...

    The duo relied on advanced mathematics, such as Lie algebra, Hopf algebra, and representation theory to create mathematical models of dense matter systems, and found that these hypothetical ...

  7. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  8. Lindemann–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Lindemann–Weierstrass...

    The theorem is also known variously as the Hermite–Lindemann theorem and the Hermite–Lindemann–Weierstrass theorem.Charles Hermite first proved the simpler theorem where the α i exponents are required to be rational integers and linear independence is only assured over the rational integers, [4] [5] a result sometimes referred to as Hermite's theorem. [6]

  9. Hodge index theorem - Wikipedia

    en.wikipedia.org/wiki/Hodge_index_theorem

    In mathematics, the Hodge index theorem for an algebraic surface V determines the signature of the intersection pairing on the algebraic curves C on V.It says, roughly speaking, that the space spanned by such curves (up to linear equivalence) has a one-dimensional subspace on which it is positive definite (not uniquely determined), and decomposes as a direct sum of some such one-dimensional ...