When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [ 1 ]

  3. Multiple kernel learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_kernel_learning

    Multiple kernel learning refers to a set of machine learning methods that use a predefined set of kernels and learn an optimal linear or non-linear combination of kernels as part of the algorithm. Reasons to use multiple kernel learning include a) the ability to select for an optimal kernel and parameters from a larger set of kernels, reducing ...

  4. Neural tangent kernel - Wikipedia

    en.wikipedia.org/wiki/Neural_tangent_kernel

    The NTK is a specific kernel derived from a given neural network; in general, when the neural network parameters change during training, the NTK evolves as well. However, in the limit of large layer width the NTK becomes constant, revealing a duality between training the wide neural network and kernel methods: gradient descent in the infinite ...

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  6. Category:Kernel methods for machine learning - Wikipedia

    en.wikipedia.org/wiki/Category:Kernel_methods...

    Pages in category "Kernel methods for machine learning" The following 18 pages are in this category, out of 18 total. This list may not reflect recent changes. F.

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Multilayer kernel machines (MKM) are a way of learning highly nonlinear functions by iterative application of weakly nonlinear kernels. They use kernel principal component analysis (KPCA), [127] as a method for the unsupervised greedy layer-wise pre-training step of deep learning. [128]

  8. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    In the kernel method the data is represented in a kernel matrix (or, Gram matrix). Many algorithms can solve machine learning problems using the kernel matrix. The main problem of kernel method is its high computational cost associated with kernel matrices. The cost is at least quadratic in the number of training data points, but most kernel ...

  9. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    In typical machine learning algorithms, these functions produce a scalar output. Recent development of kernel methods for functions with vector-valued output is due, at least in part, to interest in simultaneously solving related problems. Kernels which capture the relationship between the problems allow them to borrow strength from each other.