When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later ...

  3. Fermi–Dirac statistics - Wikipedia

    en.wikipedia.org/wiki/Fermi–Dirac_statistics

    e. Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the ...

  4. Pauli equation - Wikipedia

    en.wikipedia.org/wiki/Pauli_equation

    Pauli's equation is derived by requiring minimal coupling, which provides a g -factor g =2. Most elementary particles have anomalous g -factors, different from 2. In the domain of relativistic quantum field theory, one defines a non-minimal coupling, sometimes called Pauli coupling, in order to add an anomalous factor.

  5. Exchange interaction - Wikipedia

    en.wikipedia.org/wiki/Exchange_interaction

    Exchange interaction is the main physical effect responsible for ferromagnetism, and has no classical analogue. For bosons, the exchange symmetry makes them bunch together, and the exchange interaction takes the form of an effective attraction that causes identical particles to be found closer together, as in Bose–Einstein condensation.

  6. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.

  7. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/Bose–Einstein_statistics

    Fermi–Dirac statistics applies to fermions (particles that obey the Pauli exclusion principle), and Bose–Einstein statistics applies to bosons. As the quantum concentration depends on temperature, most systems at high temperatures obey the classical (Maxwell–Boltzmann) limit, unless they also have a very high density, as for a white dwarf.

  8. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    The change in entropy in the entropy of mixing example may be viewed as an example of a non-extensive entropy resulting from the distinguishability of the two types of particles being mixed. Quantum particles are either bosons (following Bose–Einstein statistics ) or fermions (subject to the Pauli exclusion principle , following instead Fermi ...

  9. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The property of spin relates to another basic property concerning systems of N identical particles: the Pauli exclusion principle, which is a consequence of the following permutation behaviour of an N-particle wave function; again in the position representation one must postulate that for the transposition of any two of the N particles one ...