Search results
Results From The WOW.Com Content Network
In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later ...
e. Fermi–Dirac statistics is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac distribution of particles over energy states. It is named after Enrico Fermi and Paul Dirac, each of whom derived the ...
Pauli matrices. Wolfgang Pauli (1900–1958), c. 1924. Pauli received the Nobel Prize in physics in 1945, nominated by Albert Einstein, for the Pauli exclusion principle. In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary.
In chemistry and physics, the exchange interaction is a quantum mechanical constraint on the states of indistinguishable particles. While sometimes called an exchange force, or, in the case of fermions, Pauli repulsion, its consequences cannot always be predicted based on classical ideas of force. [1] Both bosons and fermions can experience the ...
Essentially, the Pauli exclusion principle dictates that between two magnetic ions with half-occupied orbitals, which couple through an intermediary non-magnetic ion (e.g. O 2−), the superexchange will be strongly anti-ferromagnetic while the coupling between an ion with a filled orbital and one with a half-filled orbital will be ferromagnetic.
Pauli's equation is derived by requiring minimal coupling, which provides a g -factor g =2. Most elementary particles have anomalous g -factors, different from 2. In the domain of relativistic quantum field theory, one defines a non-minimal coupling, sometimes called Pauli coupling, in order to add an anomalous factor.
t. e. In quantum statistics, Bose–Einstein statistics (B–E statistics) describes one of two possible ways in which a collection of non-interacting identical particles may occupy a set of available discrete energy states at thermodynamic equilibrium. The aggregation of particles in the same state, which is a characteristic of particles ...
However, supermathematics takes on a special significance in physics, because the anti-commuting behavior can be strongly identified with the quantum-mechanical behavior of fermions: the anti-commutation is that of the Pauli exclusion principle. Thus, the study of Grassmann numbers, and of supermathematics, in general, is strongly driven by ...