Search results
Results From The WOW.Com Content Network
Hooke's law also applies when a straight steel bar or concrete beam (like the one used in buildings), supported at both ends, is bent by a weight F placed at some intermediate point. The displacement x in this case is the deviation of the beam, measured in the transversal direction, relative to its unloaded shape.
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by atom or group. [1] [2] [3] It can be represented generically as:
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
Hence, the displacement of the structure is described by the response of individual (discrete) elements collectively. The equations are written only for the small domain of individual elements of the structure rather than a single equation that describes the response of the system as a whole (a continuum).
In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
Once the global stiffness matrix, displacement vector, and force vector have been constructed, the system can be expressed as a single matrix equation. For each degree of freedom in the structure, either the displacement or the force is known.
A simple single degree of freedom system (a mass, M, on a spring of stiffness k, for example) has the following equation of motion: ¨ + = where ¨ is the acceleration (the double derivative of the displacement) and x is the displacement.