Search results
Results From The WOW.Com Content Network
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
Clar's rule states that for a benzenoid polycyclic aromatic hydrocarbon (i.e. one with only hexagonal rings), the resonance structure with the largest number of disjoint aromatic π-sextets is the most important to characterize its chemical and physical properties. Such a resonance structure is called a Clar structure. In other words, a ...
In another case, the stereoelectronic effect can result in an increased contribution of one resonance structure over another, which leads to further consequences in reactivity. For 1,4- benzoquinone monoxime, there are significant differences in the physical properties and reactivities between C2-C3 double bond and C5-C6 double bond.
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound.It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. [1]
Operationally, there are three ways in which alternative resonance structures may be generated: (1) from the LEWIS option, considering the Wiberg bond indices; (2) from the delocalization list; (3) specified by the user. [1] Below is an example of how NRT may generate a list of resonance structures.
Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Resonance (chemistry) Retrieved from "https: ...
Welcome to bowl season! From the IS4S Salute to Veterans Bowl on Dec. 14 to the College Football Playoff National Championship Game on Jan. 20, 82 teams will play in at least one postseason game.
A demonstration that how some well known 1,3-dipoles like ozone, nitro compounds and azides can be shown to have a resonance structure having 1,3 relationship between positive and negative formal charges. Known 1,3-dipoles are: Azides (RN 3) Ozone (O 3) Nitro compounds (RNO 2) Diazo compounds (R 2 CN 2) Some oxides. Azoxide compounds (RN(O)NR)