Ads
related to: how to solve sequence problems
Search results
Results From The WOW.Com Content Network
Closer to the Collatz problem is the following universally quantified problem: Given g, does the sequence of iterates g k (n) reach 1, for all n > 0? Modifying the condition in this way can make a problem either harder or easier to solve (intuitively, it is harder to justify a positive answer but might be easier to justify a negative one).
Sequences that attempt to solve Hermite's problem are often called multidimensional continued fractions. Jacobi himself came up with an early example, finding a sequence corresponding to each pair of real numbers ( x , y ) that acted as a higher-dimensional analogue of continued fractions. [ 4 ]
In this variant of the problem, which allows for interesting applications in several contexts, it is possible to devise an optimal selection procedure that, given a random sample of size as input, will generate an increasing sequence with maximal expected length of size approximately . [11] The length of the increasing subsequence selected by ...
In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors , direct methods would deliver an exact solution (for example, solving a linear system of equations A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } by Gaussian elimination ).
It differs from the longest common substring: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences. The problem of computing longest common subsequences is a classic computer science problem, the basis of data comparison programs such as the diff utility, and has applications in ...
In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.