When.com Web Search

  1. Ads

    related to: matrix equations with inverses calculator with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    This is applied, e.g., in the Kalman filter and recursive least squares methods, to replace the parametric solution, requiring inversion of a state vector sized matrix, with a condition equations based solution. In case of the Kalman filter this matrix has the dimensions of the vector of observations, i.e., as small as 1 in case only one new ...

  3. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]

  4. Conjugate residual method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_residual_method

    where A is an invertible and Hermitian matrix, and b is nonzero. The conjugate residual method differs from the closely related conjugate gradient method. It involves more numerical operations and requires more storage. Given an (arbitrary) initial estimate of the solution , the method is outlined below:

  5. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    When solving systems of equations, b is usually treated as a vector with a length equal to the height of matrix A. In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =.

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    A common use of the pseudoinverse is to compute a "best fit" (least squares) approximate solution to a system of linear equations that lacks an exact solution (see below under § Applications). Another use is to find the minimum norm solution to a system of linear equations with multiple solutions. The pseudoinverse facilitates the statement ...

  7. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =. We first verify that the right hand side ( Y {\displaystyle Y} ) satisfies X Y = I {\displaystyle XY=I} .

  8. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The nullity theorem says that the nullity of A equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of B equals the nullity of the sub-block in the upper right of the inverse matrix. The inversion procedure that led to Equation performed matrix block operations that operated on C and D first.

  9. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2). In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-semidefinite.