Search results
Results From The WOW.Com Content Network
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .
Tangential quadrilateral with inradius r. The four line segments between the center of the incircle and the points where it is tangent to the quadrilateral partition the quadrilateral into four right kites. If a line cuts a tangential quadrilateral into two polygons with equal areas and equal perimeters, then that line passes through the ...
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]
The TI-84 Plus is more expensive than most of the other models on this list, but it’s one of the best calculators money can buy. Shop Now TI-84 Plus CE Graphing Calculator
Follow the quadrilateral vertices in the same sequential direction and construct each square on the left hand side of each side of the given quadrilateral. The segments joining the centers of the squares constructed externally (or internally) to the quadrilateral over two opposite sides have been referred to as Van Aubel segments.
A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one appearing in Langley's puzzle have ...
The problem of finding sets of n points minimizing the number of convex quadrilaterals is equivalent to minimizing the crossing number in a straight-line drawing of a complete graph. The number of quadrilaterals must be proportional to the fourth power of n , but the precise constant is not known.
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...