When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Image (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Image_(mathematics)

    The preimage of an output value is the set of input values that produce . More generally, evaluating f {\displaystyle f} at each element of a given subset A {\displaystyle A} of its domain X {\displaystyle X} produces a set, called the " image of A {\displaystyle A} under (or through) f {\displaystyle f} ".

  3. Preimage theorem - Wikipedia

    en.wikipedia.org/wiki/Preimage_theorem

    In mathematics, particularly in the field of differential topology, the preimage theorem is a variation of the implicit function theorem concerning the preimage of particular points in a manifold under the action of a smooth map.

  4. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    This is also equivalent to any of {}, {<}, {} being measurable for all , or the preimage of any open set being measurable. Continuous functions, monotone functions, step functions, semicontinuous functions, Riemann-integrable functions, and functions of bounded variation are all Lebesgue measurable. [ 2 ]

  5. Fiber (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fiber_(mathematics)

    If and are the domain and image of , respectively, then the fibers of are the sets in {():} = {{: =}:}which is a partition of the domain set .Note that must be restricted to the image set of , since otherwise () would be the empty set which is not allowed in a partition.

  6. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    This function maps each image to its unique preimage. The composition of two bijections is again a bijection, but if g ∘ f {\displaystyle g\circ f} is a bijection, then it can only be concluded that f {\displaystyle f} is injective and g {\displaystyle g} is surjective (see the figure at right and the remarks above regarding injections and ...

  7. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The preimage of a given real number c is called a level set. It is the set of the solutions of the equation f(x 1, x 2, …, x n) = c. Domain.

  8. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W.If 0 W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0 W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0 W.

  9. Saturated set - Wikipedia

    en.wikipedia.org/wiki/Saturated_set

    Let : be any function. If is any set then its preimage := under is necessarily an -saturated set.In particular, every fiber of a map is an -saturated set.. The empty set = and the domain = are always saturated.