When.com Web Search

  1. Ad

    related to: schrodinger hydrogen atom energy levels quantum mechanics

Search results

  1. Results From The WOW.Com Content Network
  2. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    The Schrödinger equation for the electron in a hydrogen atom (or a hydrogen-like atom) is = where is the electron charge, is the position of the electron relative to the nucleus, = | | is the magnitude of the relative position, the potential term is due to the Coulomb interaction, wherein is the permittivity of free space and = + is the 2-body ...

  3. Hydrogen atom - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_atom

    Given that the hydrogen atom contains a nucleus and an electron, quantum mechanics allows one to predict the probability of finding the electron at any given radial distance . It is given by the square of a mathematical function known as the "wavefunction", which is a solution of the Schrödinger equation. The lowest energy equilibrium state of ...

  4. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The energy levels in the hydrogen atom depend only on the principal quantum number n. For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.

  5. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    This equation is obtained from combining the Rydberg formula for any hydrogen-like element (shown below) with E = hν = hc / λ assuming that the principal quantum number n above = n 1 in the Rydberg formula and n 2 = ∞ (principal quantum number of the energy level the electron descends from, when emitting a photon).

  6. Quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Quantum_mechanics

    Wave functions of the electron in a hydrogen atom at different energy levels. Quantum mechanics cannot predict the exact location of a particle in space, only the probability of finding it at different locations. [1] The brighter areas represent a higher probability of finding the electron.

  7. Particle in a spherically symmetric potential - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_spherically...

    Hydrogen atomic orbitals of different energy levels. The more opaque areas are where one is most likely to find an electron at any given time. In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space.

  8. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    For example, according to simple (nonrelativistic) quantum mechanics, the hydrogen atom has many stationary states: 1s, 2s, 2p, and so on, are all stationary states. But in reality, only the ground state 1s is truly "stationary": An electron in a higher energy level will spontaneously emit one or more photons to decay into the ground state. [3]

  9. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    Four quantum numbers can describe an electron energy level in a hydrogen-like atom completely: Principal quantum number (n) Azimuthal quantum number (ℓ) Magnetic quantum number (m ℓ) Spin quantum number (m s) These quantum numbers are also used in the classical description of nuclear particle states (e.g. protons and neutrons).