Search results
Results From The WOW.Com Content Network
A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.
A special form of a blazed grating is the echelle grating. It is characterized by particularly large blaze angle (>45°). Therefore, the light hits the short legs of the triangular grating lines instead of the long legs. Echelle gratings are mostly manufactured with larger line spacing but are optimized for higher diffraction orders.
The Talbot effect is a diffraction effect first observed in 1836 by Henry Fox Talbot. [1] When a plane wave is incident upon a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. The regular distance is called the Talbot length, and the repeated images are called self images or ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In 1999, a quantum interference experiment (using a diffraction grating, rather than two slits) was successfully performed with buckyball molecules (each of which comprises 60 carbon atoms). [38] [66] A buckyball is large enough (diameter about 0.7 nm, nearly half a million times larger than a proton) to be seen in an electron microscope.
An echelle grating (from French échelle, meaning "ladder") is a type of diffraction grating characterised by a relatively low groove density, but a groove shape which is optimized for use at high incidence angles and therefore in high diffraction orders. Higher diffraction orders allow for increased dispersion (spacing) of spectral features at ...
The spectrometer uses a prism or a grating to spread the light into a spectrum. This allows astronomers to detect many of the chemical elements by their characteristic spectral lines. These lines are named for the elements which cause them, such as the hydrogen alpha , beta, and gamma lines.
Simulation of GaN. The basic premise is to calculate diffraction from each layer of atoms using fast Fourier transforms (FFT) and multiplying each by a phase grating term. The wave is then multiplied by a propagator, inverse Fourier transformed, multiplied by a phase grating term yet again, and the process is repeated.