Search results
Results From The WOW.Com Content Network
Merge sort. In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order.The most frequently used orders are numerical order and lexicographical order, and either ascending or descending.
Stable sorting algorithms maintain the relative order of records with equal keys (i.e. values). That is, a sorting algorithm is stable if whenever there are two records R and S with the same key and with R appearing before S in the original list, R will appear before S in the sorted list.
Timsort is a stable sorting algorithm (order of elements with same key is kept) and strives to perform balanced merges (a merge thus merges runs of similar sizes). In order to achieve sorting stability, only consecutive runs are merged. Between two non-consecutive runs, there can be an element with the same key inside the runs.
Merge sort is more efficient than quicksort for some types of lists if the data to be sorted can only be efficiently accessed sequentially, and is thus popular in languages such as Lisp, where sequentially accessed data structures are very common. Unlike some (efficient) implementations of quicksort, merge sort is a stable sort.
In computer science, a stable sorting algorithm preserves the order of records with equal keys. In numerical analysis, a numerically stable algorithm avoids magnifying small errors. An algorithm is stable if the result produced is relatively insensitive to perturbations during computation.
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
In computer science, radix sort is a non-comparative sorting algorithm.It avoids comparison by creating and distributing elements into buckets according to their radix.For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered.
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.