Search results
Results From The WOW.Com Content Network
81 is: the square of 9 and the second fourth-power of a prime; 3 4. with an aliquot sum of 40; within an aliquot sequence of three composite numbers (81,40,50,43,1,0) to the Prime in the 43-aliquot tree. a perfect totient number like all powers of three. [1] a heptagonal number. [2] an icosioctagonal number. [3] a centered octagonal number. [4 ...
One way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to ...
no "Ordered" means that the elements of the data type have some kind of explicit order to them, where an element can be considered "before" or "after" another element. This order is usually determined by the order in which the elements are added to the structure, but the elements can be rearranged in some contexts, such as sorting a list.
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
Inputs: n: a value to test for primality, n>3; k: a parameter that determines the number of times to test for primality Output: composite if n is composite, otherwise probably prime Repeat k times: Pick a randomly in the range [2, n − 2] If (), then return composite
Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors ...
Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if k is a quadratic residue modulo a coprime n, then ( k / n ) = 1, but not all entries with a Jacobi symbol of 1 (see the n = 9 and n = 15 rows) are quadratic residues.
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...