Ads
related to: how an altimeter works aviation technology
Search results
Results From The WOW.Com Content Network
Radar altimeter technology is also used in terrain-following radar allowing combat aircraft to fly at very low height above the terrain. After extensive research and experimentation, it has been shown that "phase radio-altimeters" are most suitable for ground effect vehicles, as compared to laser, isotropic or ultrasonic altimeters. [3]
The dipole antenna of a radar altimeter of 1947. A radar altimeter (RA), also called a radio altimeter (RALT), electronic altimeter, reflection altimeter, or low-range radio altimeter (LRRA), measures altitude above the terrain presently beneath an aircraft or spacecraft by timing how long it takes a beam of radio waves to travel to ground, reflect, and return to the craft.
Modern analogue altimeters in transport aircraft are typically drum-type. The latest development in clarity is an Electronic flight instrument system with integrated digital altimeter displays. This technology has trickled down from airliners and military planes until it is now standard in many general aviation aircraft.
The system monitors an aircraft's height above ground as determined by a radar altimeter. A computer then keeps track of these readings, calculates trends, and will warn the flight crew with visual and audio messages if the aircraft is in certain defined flying configurations ("modes"). The modes are:
The cockpit of a Slingsby T-67 Firefly two-seat light airplane.The flight instruments are visible on the left of the instrument panel. Flight instruments are the instruments in the cockpit of an aircraft that provide the pilot with data about the flight situation of that aircraft, such as altitude, airspeed, vertical speed, heading and much more other crucial information in flight.
In aviation, a flight level (FL) is an aircraft's altitude as determined by a pressure altimeter using the International Standard Atmosphere. It is expressed in hundreds of feet or metres. The altimeter setting used is the ISA sea level pressure of 1013 hPa or 29.92 inHg. The actual surface pressure will vary from this at different locations ...
It is an essential avionics component found in modern aircraft. This computer, rather than individual instruments, can determine the calibrated airspeed, Mach number, altitude, and altitude trend data from an aircraft's pitot-static system.
The Goodyear Aircraft Corporation ATRAN (Automatic Terrain Recognition And Navigation) system for the MGM-13 Mace was the earliest known TERCOM system. In August 1952, Air Materiel Command initiated the mating of the Goodyear ATRAN with the MGM-1 Matador. This mating resulted in a production contract in June 1954.