Search results
Results From The WOW.Com Content Network
A formula that is neither a tautology nor a contradiction is said to be logically contingent. Such a formula can be made either true or false based on the values assigned to its propositional variables. The double turnstile notation is used to indicate that S is a tautology.
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
[67] [69] An inconsistent formula is also called self-contradictory, [1] and said to be a self-contradiction, [1] or simply a contradiction, [82] [83] [84] although this latter name is sometimes reserved specifically for statements of the form ().
This contradiction, as opposed to metaphysical thinking, is not an objectively impossible thing, because these contradicting forces exist in objective reality, not cancelling each other out, but actually defining each other's existence. According to Marxist theory, such a contradiction can be found, for example, in the fact that:
For example, a 32-bit integer can encode the truth table for a LUT with up to 5 inputs. When using an integer representation of a truth table, the output value of the LUT can be obtained by calculating a bit index k based on the input values of the LUT, in which case the LUT's output value is the k th bit of the integer.
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. [1] [2] It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion.
A self-refuting idea or self-defeating idea is an idea or statement whose falsehood is a logical consequence of the act or situation of holding them to be true. Many ideas are called self-refuting by their detractors, and such accusations are therefore almost always controversial, with defenders stating that the idea is being misunderstood or that the argument is invalid.
So Plato's law of non-contradiction is the empirically derived necessary starting point for all else he has to say. [13] In contrast, Aristotle reverses Plato's order of derivation. Rather than starting with experience, Aristotle begins a priori with the law of non-contradiction as the fundamental axiom of an analytic philosophical system. [14]