Search results
Results From The WOW.Com Content Network
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
The tangent line to the unit circle at the point A, is perpendicular to , and intersects the y - and x-axes at points = (,) and = (,). The coordinates of these points give the values of all trigonometric functions for any arbitrary real value of θ in the following manner.
Circles tangent to two given lines must lie on the angle bisector. Tangent line to a circle from a given point draw semicircle centered on the midpoint between the center of the circle and the given point. Power of a point and the harmonic mean [clarification needed] The radical axis of two circles is the set of points of equal tangents, or ...
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
Constructing a tangent using Thales's theorem. Thales's theorem can be used to construct the tangent to a given circle that passes through a given point. In the figure at right, given circle k with centre O and the point P outside k, bisect OP at H and draw the circle of radius OH with centre H.
If a tangent from an external point A meets the circle at F and a secant from the external point A meets the circle at C and D respectively, then AF 2 = AC × AD (tangent–secant theorem). The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side ...
Similar considerations generate the second tangent circle, that meets the given circles at the points , (see diagram). All tangent circles to the given circles can be found by varying line . Positions of the centers Circles tangent to two circles. If is the center and the radius of the circle, that is tangent to the given circles at the points ...