When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  3. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    This relationship can be used to translate properties of expected values into properties of probabilities, e.g. using the law of large numbers to justify estimating probabilities by frequencies. The expected values of the powers of X are called the moments of X; the moments about the mean of X are expected values of powers of X − E[X].

  4. Tail value at risk - Wikipedia

    en.wikipedia.org/wiki/Tail_value_at_risk

    Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at ⁡ (), the value at risk of level . [2] Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of ...

  5. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    Note that the conditional expected value ⁡ is a random variable in its own right, whose value depends on the value of . Notice that the conditional expected value of given the event = is a function of (this is where adherence to the conventional and rigidly case-sensitive notation of probability theory becomes important!).

  6. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then

  7. Law of total covariance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_covariance

    Note: The conditional expected values E( X | Z) and E( Y | Z) are random variables whose values depend on the value of Z. Note that the conditional expected value of X given the event Z = z is a function of z. If we write E( X | Z = z) = g(z) then the random variable E( X | Z) is g(Z). Similar comments apply to the conditional covariance.

  8. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    The conditional probability of A given X can thus be treated as a random variable Y with outcomes in the interval [,]. From the law of total probability, its expected value is equal to the unconditional probability of A.