Search results
Results From The WOW.Com Content Network
An indeterminate system by definition is consistent, in the sense of having at least one solution. [3] For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an ...
In general, a system with more equations than unknowns has no solution. Such a system is also known as an overdetermined system. In the first case, the dimension of the solution set is, in general, equal to n − m, where n is the number of variables and m is the number of equations.
Consider the system of equations x + y + 2z = 3, x + y + z = 1, 2x + 2y + 2z = 2.. The coefficient matrix is = [], and the augmented matrix is (|) = [].Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are infinitely many solutions.
A system of equations is said to be inconsistent when there are no solutions and it is called indeterminate when there is more than one solution. For linear equations, an indeterminate system will have infinitely many solutions (if it is over an infinite field), since the solutions can be expressed in terms of one or more parameters that can ...
So there is a unique solution to the original system of equations. Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in reduced row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish ...
There will be an infinitude of other solutions only when the system of equations has enough dependencies (linearly dependent equations) that the number of independent equations is at most N − 1. But with M ≥ N the number of independent equations could be as high as N , in which case the trivial solution is the only one.
The main property of linear underdetermined systems, of having either no solution or infinitely many, extends to systems of polynomial equations in the following way. A system of polynomial equations which has fewer equations than unknowns is said to be underdetermined.
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...