Search results
Results From The WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3
The method of moments was introduced by Pafnuty Chebyshev for proving the central limit theorem; Chebyshev cited earlier contributions by Irénée-Jules Bienaymé. [2] More recently, it has been applied by Eugene Wigner to prove Wigner's semicircle law, and has since found numerous applications in the theory of random matrices. [3]
By the classical central limit theorem the properly normed sum of a set of random variables, each with finite variance, will tend toward a normal distribution as the number of variables increases. Without the finite variance assumption, the limit may be a stable distribution that is not normal.
Cayley's theorem (group theory) Central limit theorem (probability) Cesàro's theorem (real analysis) Ceva's theorem ; Chasles' theorem, Chasles' theorem ; Chasles' theorem (algebraic geometry) Chebotarev's density theorem (number theory) Chen's theorem (number theory) Cheng's eigenvalue comparison theorem (Riemannian geometry)
Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric.It was introduced by Charles Stein, who first published it in 1972, [1] to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform ...