When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The F table serves as a reference guide containing critical F values for the distribution of the F-statistic under the assumption of a true null hypothesis. It is designed to help determine the threshold beyond which the F statistic is expected to exceed a controlled percentage of the time (e.g., 5%) when the null hypothesis is accurate.

  3. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.

  4. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    In Table 1 of the same work, he gave the more precise value 1.959964. [12] In 1970, the value truncated to 20 decimal places was calculated to be 1.95996 39845 40054 23552... [13] [14] The commonly used approximate value of 1.96 is therefore accurate to better than one part in 50,000, which is more than adequate for applied work.

  5. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.

  6. Birmingham gauge - Wikipedia

    en.wikipedia.org/wiki/Birmingham_gauge

    The Birmingham gauge ranges from 5/0 or 00000, the lowest gauge number corresponding to the largest size of 0.500 inches (12.7 mm), to 36, the highest gauge number corresponding to the smallest size of 0.004 inches (0.10 mm). The increments between gauge sizes are not linear and vary. [2]

  7. Neutron temperature - Wikipedia

    en.wikipedia.org/wiki/Neutron_temperature

    A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (about 4.0×10 −21 J or 2.4 MJ/kg, hence a speed of 2.19 km/s), which is the energy corresponding to the most probable speed at a temperature of 290 K (17 °C or 62 °F), the mode of the Maxwell–Boltzmann distribution for this temperature, E peak = k T.

  8. Conversion of scales of temperature - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_scales_of...

    This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...

  9. Depth of field - Wikipedia

    en.wikipedia.org/wiki/Depth_of_field

    [10] For a given size of the subject's image in the focal plane, the same f-number on any focal length lens will give the same depth of field. [11] This is evident from the above DOF equation by noting that the ratio u/f is constant for constant image size. For example, if the focal length is doubled, the subject distance is also doubled to ...