Search results
Results From The WOW.Com Content Network
A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs . The stable balance of attractive and repulsive forces between atoms, when they share electrons , is known as covalent bonding. [ 1 ]
In a bond between two identical atoms, half the bond distance is equal to the covalent radius. Bond lengths are measured in the solid phase by means of X-ray diffraction, or approximated in the gas phase by microwave spectroscopy. A bond between a given pair of atoms may vary between different molecules.
The covalent radius, r cov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm. In principle, the sum of the two covalent radii should equal the covalent bond length between two atoms, R (AB) = r (A) + r (B).
Although the bond valence model is mostly used for validating newly determined structures, it is capable of predicting many of the properties of those chemical structures that can be described by localized bonds [3] In the bond valence model, the valence of an atom, V, is defined as the number of electrons the atom uses for bonding. This is ...
Molecules that are formed primarily from non-polar covalent bonds are often immiscible in water or other polar solvents, but much more soluble in non-polar solvents such as hexane. A polar covalent bond is a covalent bond with a significant ionic character. This means that the two shared electrons are closer to one of the atoms than the other ...
Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.
In chemistry, bond order is a formal measure of the multiplicity of a covalent bond between two atoms. As introduced by Gerhard Herzberg, [1] building off of work by R. S. Mulliken and Friedrich Hund, bond order is defined as the difference between the numbers of electron pairs in bonding and antibonding molecular orbitals.
A solid with extensive hydrogen bonding will be considered a molecular solid, yet strong hydrogen bonds can have a significant degree of covalent character. As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons.