Search results
Results From The WOW.Com Content Network
A maximal matching is a matching M of a graph G that is not a subset of any other matching. A matching M of a graph G is maximal if every edge in G has a non-empty intersection with at least one edge in M. The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality ...
A perfect matching can only occur when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. This can only occur when the graph has an odd number of vertices, and such a matching must be maximum. In the above figure, part (c) shows a near-perfect matching.
The number of new relationships (matches) created (per unit of time) is given by . A matching function is in general analogous to a production function. However, whereas a production function usually represents the production of goods and services from inputs like labor and capital, a matching function represents the formation of new ...
The fifth corner (1/2,1/2,1/2) does not represent a matching - it represents a fractional matching in which each edge is "half in, half out". Note that this is the largest fractional matching in this graph - its weight is 3/2, in contrast to the three integral matchings whose size is only 1. As another example, in the 4-cycle there are 4 edges.
The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.
A universal graph is a graph that contains as subgraphs all graphs in a given family of graphs, or all graphs of a given size or order within a given family of graphs. 2. A universal vertex (also called an apex or dominating vertex) is a vertex that is adjacent to every other vertex in the graph.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...