When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  3. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .

  4. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    Max-sum MSSP is a special case of MKP in which the value of each item equals its weight. The knapsack problem is a special case of MKP in which m=1. The subset-sum problem is a special case of MKP in which both the value of each item equals its weight, and m=1. The MKP has a Polynomial-time approximation scheme. [6]

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value

  6. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance

  7. Subadditivity - Wikipedia

    en.wikipedia.org/wiki/Subadditivity

    The economic intuition behind risk measure subadditivity is that a portfolio risk exposure should, at worst, simply equal the sum of the risk exposures of the individual positions that compose the portfolio. The lack of subadditivity is one of the main critiques of VaR models which do not rely on the assumption of normality of risk factors.

  8. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    3-satisfiability can be generalized to k-satisfiability (k-SAT, also k-CNF-SAT), when formulas in CNF are considered with each clause containing up to k literals. [ citation needed ] However, since for any k ≥ 3, this problem can neither be easier than 3-SAT nor harder than SAT, and the latter two are NP-complete, so must be k-SAT.

  9. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    In mathematical analysis, Cesàro summation (also known as the Cesàro mean [1] [2] or Cesàro limit [3]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.