Search results
Results From The WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...
The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [32] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...
An algorithm published by T. C. Hu and M.-T. Shing achieves O(n log n) computational complexity. [3] [4] [5] They showed how the matrix chain multiplication problem can be transformed (or reduced) into the problem of triangulation of a regular polygon. The polygon is oriented such that there is a horizontal bottom side, called the base, which ...
Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...
The online vector-matrix-vector problem (OuMv) is a variant of OMv where the algorithm receives, at each round , two Boolean vectors and , and returns the product . This version has the benefit of returning a Boolean value at each round instead of a vector of an n {\displaystyle n} -dimensional Boolean vector.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Let us assume that their dimensions are m×n, n×p, and p×s, respectively. Matrix A×B×C will be of size m×s and can be calculated in two ways shown below: Ax(B×C) This order of matrix multiplication will require nps + mns scalar multiplications. (A×B)×C This order of matrix multiplication will require mnp + mps scalar calculations.