When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.

  3. Pentagon - Wikipedia

    en.wikipedia.org/wiki/Pentagon

    In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.

  4. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    Tracing around a convex n-gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn, so the sum of the exterior angles must be 360°. This argument can be generalized to concave simple polygons, if external angles that turn in the opposite direction are subtracted from the ...

  5. Simple polygon - Wikipedia

    en.wikipedia.org/wiki/Simple_polygon

    If the internal angle is , the external angle at the same vertex is defined to be its supplement, the turning angle from one directed side to the next. The external angle is positive at a convex vertex or negative at a concave vertex. For every simple polygon, the sum of the external angles is (one full turn, 360°). Thus the sum of the ...

  6. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    and each exterior angle (i.e., supplementary to the interior angle) has a measure of degrees, with the sum of the exterior angles equal to 360 degrees or 2π radians or one full turn. As n approaches infinity, the internal angle approaches 180 degrees.

  7. Icosagon - Wikipedia

    en.wikipedia.org/wiki/Icosagon

    In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagon's interior angles is 3240 degrees. The sum of any icosagon's interior angles is 3240 degrees. Regular icosagon

  8. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    In geometry, a decagon (from the Greek δέκα déka and γωνία gonía, "ten angles") is a ten-sided polygon or 10-gon. [1] The total sum of the interior angles of a simple decagon is 1440°. Regular decagon

  9. Pentadecagon - Wikipedia

    en.wikipedia.org/wiki/Pentadecagon

    Compared with the first animation (with green lines) are in the following two images the two circular arcs (for angles 36° and 24°) rotated 90° counterclockwise shown. They do not use the segment C G ¯ {\displaystyle {\overline {CG}}} , but rather they use segment M G ¯ {\displaystyle {\overline {MG}}} as radius A H ¯ {\displaystyle ...