Search results
Results From The WOW.Com Content Network
The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.
The sum of the squared distances from the vertices of a regular n-gon to any point on its circumcircle equals 2nR 2 where R is the circumradius. [4]: p. 73 The sum of the squared distances from the midpoints of the sides of a regular n-gon to any point on the circumcircle is 2nR 2 − 1 / 4 ns 2, where s is the side length and R is the ...
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n -gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn , so the sum of the exterior angles must be 360°.
In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.
One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°. The triacontagon is the largest regular polygon whose interior angle is the sum of the interior angles of smaller polygons: 168° is the sum of the interior angles of the equilateral triangle (60°) and the regular pentagon (108°).
The external angle is positive at a convex vertex or negative at a concave vertex. For every simple polygon, the sum of the external angles is (one full turn, 360°). Thus the sum of the internal angles, for a simple polygon with sides is (). [14]
In geometry a quadrilateral is a four-sided polygon, ... This is a special case of the n-gon interior angle sum formula: S = (n − 2) × 180° (here, n=4). [2]
In geometry, the Gram–Euler theorem, [1] Gram-Sommerville, Brianchon-Gram or Gram relation [2] (named after Jørgen Pedersen Gram, Leonhard Euler, Duncan Sommerville and Charles Julien Brianchon) is a generalization of the internal angle sum formula of polygons to higher-dimensional polytopes.