Search results
Results From The WOW.Com Content Network
The advantage of APSK over conventional QAM is a lower number of possible amplitude levels and therefore a lower peak-to-average power ratio (PAPR). [2] The resilience of APSK to amplifier and channel non-linearities afforded by its low PAPR have made it especially attractive for satellite communications, including DVB-S2 .
Analog QAM: PAL color bar signal on a vectorscope. In a QAM signal, one carrier lags the other by 90°, and its amplitude modulation is customarily referred to as the in-phase component, denoted by I(t). The other modulating function is the quadrature component, Q(t). So the composite waveform is mathematically modeled as:
C-QUAM (Compatible QUadrature Amplitude Modulation) is the method of AM stereo broadcasting used in Canada, the United States and most other countries. It was invented in 1977 by Norman Parker, Francis Hilbert, and Yoshio Sakaie, and published in an IEEE journal.
Some of the methods used for shaping are described in the trellis shaping paper by Dr. G. D. Forney Jr. [1] Shell mapping [2] is used in V.34 modems to get a shaping gain of .8 dB.
QAM is a digital television standard using quadrature amplitude modulation. It is the format by which digital cable channels are encoded and transmitted via cable television providers. QAM is used in a variety of communications systems such as Dial-up modems and WiFi.
QAM (quadrature amplitude modulation): a finite number of at least two phases and at least two amplitudes are used. In QAM, an in-phase signal (or I, with one example being a cosine waveform) and a quadrature phase signal (or Q, with an example being a sine wave) are amplitude modulated with a finite number of amplitudes and then summed.
Carrierless amplitude phase modulation (CAP) is a variant of quadrature amplitude modulation (QAM). Instead of modulating the amplitude of two carrier waves, CAP generates a QAM signal by combining two PAM signals filtered through two filters designed so that their impulse responses form a Hilbert pair .
Examples of these are quadrature phase shift keying and its generalisation as m-ary quadrature amplitude modulation (m-QAM). Because existing computers and automation systems are based on binary logic most of the modulations have an order which is a power of two: 2, 4, 8, 16, etc.