Search results
Results From The WOW.Com Content Network
The slant height of a right circular cone is the distance from any point on the circle of its base to the apex via a line segment along the surface of the cone. It is given by r 2 + h 2 {\displaystyle {\sqrt {r^{2}+h^{2}}}} , where r {\displaystyle r} is the radius of the base and h {\displaystyle h} is the height.
An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft and the distance between the radar antenna and the aircraft's ground track (point (3) on the earth directly below the aircraft).
Slant range, in telecommunications, the line-of-sight distance between two points which are not at the same level; Slant drilling (or Directional drilling), the practice of drilling non-vertical wells; Slant height, is the distance from any point on the circle to the apex of a right circular cone
The height of a frustum is the perpendicular distance between the planes of the two bases. Cones and pyramids can be viewed as degenerate cases of frusta, where one of the cutting planes passes through the apex (so that the corresponding base reduces to a point). The pyramidal frusta are a subclass of prismatoids.
The slant height of a right square pyramid is defined as the height of one of its isosceles triangles. It can be obtained via the Pythagorean theorem : s = b 2 − l 2 4 , {\displaystyle s={\sqrt {b^{2}-{\frac {l^{2}}{4}}}},} where l {\displaystyle l} is the length of the triangle's base, also one of the square's edges, and b {\displaystyle b ...
The lateral surface volume of a right spherical cone is = where is the radius of the spherical base and is the slant height of the cone (the distance between the 2D surface of the sphere and the apex).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This formula can be derived by partitioning the n-sided polygon into n congruent isosceles triangles, and then noting that the apothem is the height of each triangle, and that the area of a triangle equals half the base times the height. The following formulations are all equivalent: