Search results
Results From The WOW.Com Content Network
Buffer capacity rises to a local maximum at pH = pK a. The height of this peak depends on the value of pK a. Buffer capacity is negligible when the concentration [HA] of buffering agent is very small and increases with increasing concentration of the buffering agent. [3] Some authors show only this region in graphs of buffer capacity. [2]
Mass concentration, g/(100 ml) at 15.56 °C Density relative to 4 °C water [citation needed] Density at 20 °C relative to 20 °C water
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
For example, if there are 10 grams of salt (the solute) dissolved in 1 litre of water (the solvent), this solution has a certain salt concentration . If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl).
The carbonate buffer system is a series of reactions that uses carbonate as a buffer to convert into bicarbonate. [12] The carbonate buffer reaction helps maintain a constant H+ concentration in the ocean because it consumes hydrogen ions, [13] and thereby maintains a constant pH. [12]
Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1. At pH ≤ pK a − 2 the substance is said to be fully protonated and at pH ≥ pK a + 2 it is fully dissociated (deprotonated).
The first hydration shell of a sodium ion dissolved in water. DNA is typically separated from other cell constituents in a two-phase solution of phenol and water. Due to its highly charged phosphate backbone DNA is polar and will concentrate in the water phase while lipids and proteins will concentrate in the phenol phase.
Influences on dissociation: There should be a minimum influence of buffer concentration, temperature, and ionic composition of the medium on the dissociation of the buffer. Well-behaved cation interactions: If the buffers form complexes with cationic ligands, the complexes formed should remain soluble. Ideally, at least some of the buffering ...