When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Two-sided Jacobi SVD algorithm—a generalization of the Jacobi eigenvalue algorithm—is an iterative algorithm where a square matrix is iteratively transformed into a diagonal matrix. If the matrix is not square the QR decomposition is performed first and then the algorithm is applied to the R {\displaystyle R} matrix.

  3. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well. In the remainder of this article we will consider only square diagonal matrices, and refer to them ...

  4. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order .

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero

  6. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom right corner of the matrix.

  8. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The determinant of a diagonal matrix is simply the product of all diagonal entries. Such computations generalize easily to A = P D P − 1 {\displaystyle A=PDP^{-1}} . The geometric transformation represented by a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling ).

  9. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    If a square, invertible matrix has an LDU (factorization with all diagonal entries of L and U equal to 1), then the factorization is unique. [8] In that case, the LU factorization is also unique if we require that the diagonal of L {\textstyle L} (or U {\textstyle U} ) consists of ones.