When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydrogen isocyanide - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_isocyanide

    Hydrogen isocyanide (HNC) is a linear triatomic molecule with C ∞v point group symmetry.It is a zwitterion and an isomer of hydrogen cyanide (HCN). [2] Both HNC and HCN have large, similar dipole moments, with μ HNC = 3.05 Debye and μ HCN = 2.98 Debye respectively. [3]

  3. Hydrogen cyanide - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_cyanide

    Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen.The tautomer of HCN is HNC, hydrogen isocyanide. [citation needed]HCN has a faint bitter almond-like odor that some people are unable to detect owing to a recessive genetic trait. [12]

  4. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    [1]: 416 The geometry of the central atoms and their non-bonding electron pairs in turn determine the geometry of the larger whole molecule. The number of electron pairs in the valence shell of a central atom is determined after drawing the Lewis structure of the molecule, and expanding it to show all bonding groups and lone pairs of electrons.

  6. Isocyanic acid - Wikipedia

    en.wikipedia.org/wiki/Isocyanic_acid

    [10] [11] If so, then the canonical form H−N + ≡C−O − is the major resonance structure. However, classic vibrational analysis would indicate that the 2268.8 cm −1 is the asymmetric N=C=O stretch, as per Colthup et al., [ 12 ] as well as the NIST Chemistry WebBook, [ 13 ] which also reports the corresponding symmetric N=C=O stretch ...

  7. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    In chemistry, molecules with a non-collinear arrangement of two adjacent bonds have bent molecular geometry, also known as angular or V-shaped. Certain atoms, such as oxygen, will almost always set their two (or more) covalent bonds in non-collinear directions due to their electron configuration .

  8. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    The hydrogen fluoride, HF, molecule is polar by virtue of polar covalent bonds – in the covalent bond electrons are displaced toward the more electronegative fluorine atom. The ammonia molecule, NH 3, is polar as a result of its molecular geometry. The red represents partially negatively charged regions.

  9. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    The seesaw geometry occurs when a molecule has a steric number of 5, with the central atom being bonded to 4 other atoms and 1 lone pair (AX 4 E 1 in AXE notation). An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced ...