Ad
related to: dark matter energy explained
Search results
Results From The WOW.Com Content Network
In standard cosmology, there are three components of the universe: matter, radiation, and dark energy. This matter is anything whose energy density scales with the inverse cube of the scale factor, i.e., ρ ∝ a −3, while radiation is anything whose energy density scales to the inverse fourth power of the scale factor (ρ ∝ a −4).
The measured dark energy density is Ω Λ ≈ 0.690; the observed ordinary (baryonic) matter energy density is Ω b ≈ 0.0482 and the energy density of radiation is negligible. This leaves a missing Ω dm ≈ 0.258 which nonetheless behaves like matter (see technical definition section above) – dark matter.
Since the 1990s, studies have shown that, assuming the cosmological principle, around 68% of the mass–energy density of the universe can be attributed to dark energy. [6] [7] [8] The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the standard model of cosmology known as the ΛCDM model.
“Dark energy is a misidentification of variations in the kinetic energy of expansion, which is not uniform in a Universe as lumpy as the one we actually live in.
Paul Sutter explained the dark matter landscape while reporting on the paper for Live Science. “Dark matter may be made of massive particles, but searches for those kinds of particles have ...
The physical nature of dark energy is at present unknown," Huterer said. The new findings appear to corroborate the current standard model of cosmology that includes the theory of general relativity.
The discrepancies could also be explained by particular properties (stellar masses or effective volume) of the candidate galaxies, yet unknown force or particle outside of the Standard Model through which dark matter interacts, more efficient baryonic matter accumulation by the dark matter halos, early dark energy models, [102] or the ...
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. [1]