When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  3. Kaggle - Wikipedia

    en.wikipedia.org/wiki/Kaggle

    Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

  4. Albumentations - Wikipedia

    en.wikipedia.org/wiki/Albumentations

    The library has also been widely adopted in computer vision and deep learning projects, with over 12,000 packages depending on it as listed on its GitHub dependents page. [ 5 ] In addition, Albumentations has been used in many winning solutions for computer vision competitions, including the DeepFake Detection challenge at Kaggle with a prize ...

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Timeline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_machine_learning

    Deep learning spurs huge advances in vision and text processing. 2020s Generative AI leads to revolutionary models, creating a proliferation of foundation models both proprietary and open source, notably enabling products such as ChatGPT (text-based) and Stable Diffusion (image based). Machine learning and AI enter the wider public consciousness.

  7. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]

  8. Google Brain - Wikipedia

    en.wikipedia.org/wiki/Google_Brain

    The Google Brain team contributed to the Google Translate project by employing a new deep learning system that combines artificial neural networks with vast databases of multilingual texts. [21] In September 2016, Google Neural Machine Translation (GNMT) was launched, an end-to-end learning framework, able to learn from a large number of ...

  9. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    blog.research.google /2020 /02 /exploring-transfer-learning-with-t5.html T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the ...