Search results
Results From The WOW.Com Content Network
A positive divisor of that is different from is called a proper divisor or an aliquot part of (for example, the proper divisors of 6 are 1, 2, and 3). A number that does not evenly divide n {\displaystyle n} but leaves a remainder is sometimes called an aliquant part of n . {\displaystyle n.}
When R is commutative, the notions of left divisor, right divisor, and two-sided divisor coincide, so one says simply that a is a divisor of b, or that b is a multiple of a, and one writes . Elements a and b of an integral domain are associates if both a ∣ b {\displaystyle a\mid b} and b ∣ a {\displaystyle b\mid a} .
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only ...
The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers p r p for p ...
Every common divisor of a and b is a divisor of gcd(a, b). gcd(a, b), where a and b are not both zero, may be defined alternatively and equivalently as the smallest positive integer d which can be written in the form d = a⋅p + b⋅q, where p and q are integers. This expression is called Bézout's identity.
In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [2] One says also a is prime to b or a ...
Given elements a and b of R, one says that a divides b, or that a is a divisor of b, or that b is a multiple of a, if there exists an element x in R such that ax = b. The units of R are the elements that divide 1; these are precisely the invertible elements in R. Units divide all other elements.
In these enlarged number systems, division is the inverse operation to multiplication, that is a = c / b means a × b = c, as long as b is not zero. If b = 0, then this is a division by zero, which is not defined. [a] [4]: 246 In the 21-apples example, everyone would receive 5 apple and a quarter of an apple, thus avoiding any leftover.