Search results
Results From The WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.
This is an example of an equation that holds off shell, since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an on shell equation by simply substituting the Euler–Lagrange equation:
The weak interaction fields Z, W ± satisfy the Proca equation. These equations can be solved exactly. One usually does so by considering first solutions that are periodic with some period L along each spatial axis; later taking the limit: L → ∞ will lift this periodicity restriction.