Search results
Results From The WOW.Com Content Network
While ASCII text encoded using UTF-8 is backward compatible with ASCII, this is not true when Unicode Standard recommendations are ignored and a BOM is added. A BOM can confuse software that isn't prepared for it but can otherwise accept UTF-8, e.g. programming languages that permit non-ASCII bytes in string literals but not at the start of the ...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2019) (Learn how and when to remove this message) This article compares Unicode encodings in two types of environments: 8-bit clean environments, and environments that forbid the use of byte values with the ...
For UTF-8, the BOM is optional, while it is a must for the UTF-16 and the UTF-32 encodings. (Note: UTF-16 and UTF-32 without the BOM are formally known under different names, they are different encodings, and thus needs some form of encoding declaration – see UTF-16BE, UTF-16LE, UTF-32LE and UTF-32BE.) The use of the BOM character (U+FEFF ...
Text may be ambiguous as to what encoding it is in, for instance pure ASCII text is valid ASCII or ISO-8859-1 or CP1252 or UTF-8. "Tags" may indicate a document encoding, but when this is incorrect this may be silently corrected by display software (for instance the HTML spec says that the tag for ISO-8859-1 should be treated as CP1252), so ...
Punched tape with the word "Wikipedia" encoded in ASCII.Presence and absence of a hole represents 1 and 0, respectively; for example, W is encoded as 1010111.. Character encoding is the process of assigning numbers to graphical characters, especially the written characters of human language, allowing them to be stored, transmitted, and transformed using computers. [1]
Although not strictly required, UTF-8 is usually also transfer encoded to avoid problems across seven-bit mail servers. MIME transfer encoding of UTF-8 makes it either unreadable as a plain text (in the case of base64) or, for some languages and types of text, heavily size inefficient (in the case of quoted-printable).
UTF-16 or UTF-32, which can be used for all languages as well, are less widely used because they can be harder to handle in programming languages that assume a byte-oriented ASCII superset encoding, and they are less efficient for text with a high frequency of ASCII characters, which is usually the case for HTML documents.
Binary data and text in any other encoding are likely to contain byte sequences that are invalid as UTF-8, so existence of such invalid sequences indicates the file is not UTF-8, while lack of invalid sequences is a very strong indication the text is UTF-8. Practically the only exception is text containing only ASCII-range bytes, as this may be ...