Search results
Results From The WOW.Com Content Network
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Figure 3:Animated sequence of replication. In eukaryotic cells (cells that package their DNA within a nucleus), chromosomes consist of very long linear double-stranded DNA molecules. During the S-phase of each cell cycle ( Figure 1 ), all of the DNA in a cell is duplicated in order to provide one copy to each of the daughter cells after the ...
Interphase consists of three main phases: G 1, S, and G 2. G 1 is a time of growth for the cell where specialized cellular functions occur in order to prepare the cell for DNA replication. [16] There are checkpoints during interphase that allow the cell to either advance or halt further development.
S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G 1 phase and G 2 phase. [1] Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved.
[3] Synthesis (S), in which the cell synthesizes its DNA and the amount of DNA is doubled but the number of chromosomes remains constant (via semiconservative replication). G 2 (Gap 2), in which the cell resumes its growth in preparation for division. The cell continues to grow until mitosis begins. In plants, chloroplasts divide during G2.
The ATM/ATR DNA damage network will also respond to cases where there is an overexpression of Cdt1. Overexpression of Cdt1 leads to accumulation of ssDNA and DSBs. Ataxia telangiectasia and Rad3 related (ATR) is activated earlier when it detects ssDNA in the earlier phases of DNA re-replication. ATR phosphorylates downstream replication factors ...