When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    p. -value. In null-hypothesis significance testing, the p-value[note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2][3] A very small p -value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  3. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a ...

  4. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    Statistical significance. In statistical hypothesis testing, [1][2] a result has statistical significance when a result at least as "extreme" would be very infrequent if the null hypothesis were true. [3] More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that ...

  5. Fisher's method - Wikipedia

    en.wikipedia.org/wiki/Fisher's_method

    Fisher's method combines extreme value probabilities from each test, commonly known as " p -values ", into one test statistic (X2) using the formula. where pi is the p -value for the ith hypothesis test. When the p -values tend to be small, the test statistic X2 will be large, which suggests that the null hypotheses are not true for every test.

  6. Data dredging - Wikipedia

    en.wikipedia.org/wiki/Data_dredging

    Note that a p-value of 0.01 suggests that 1% of the time a result at least that extreme would be obtained by chance; if hundreds or thousands of hypotheses (with mutually relatively uncorrelated independent variables) are tested, then one is likely to obtain a p-value less than 0.01 for many null hypotheses.

  7. Permutation test - Wikipedia

    en.wikipedia.org/wiki/Permutation_test

    The permutation test is designed to determine whether the observed difference between the sample means is large enough to reject, at some significance level, the null hypothesis H that the data drawn from is from the same distribution as the data drawn from . The test proceeds as follows. First, the difference in means between the two samples ...

  8. Levene's test - Wikipedia

    en.wikipedia.org/wiki/Levene's_test

    If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...

  9. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    The Pearson's chi-squared test statistic is defined as . The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.