When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  3. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    Every non-zero number x, real or complex, has n different complex number nth roots. (In the case x is real, this count includes any real nth roots.) The only complex root of 0 is 0. The nth roots of almost all numbers (all integers except the nth powers, and all rationals except the quotients of two nth powers) are irrational. For example,

  4. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of and is not a divisor of for any k < n. Its roots are all n th primitive roots of unity e 2 i π k n {\displaystyle e^{2i\pi {\frac {k}{n}}}} , where k runs over the positive integers less ...

  5. Word equation - Wikipedia

    en.wikipedia.org/wiki/Word_equation

    A classical example of a word equation is the commutation equation =, in which is an unknown and is a constant word. It is well-known [ 4 ] that the solutions of the commutation equation are exactly those morphisms h {\displaystyle h} mapping x {\displaystyle x} to some power of w {\displaystyle w} .

  6. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only k {\displaystyle k} previous terms of the sequence appear in the equation, for a parameter k {\displaystyle k} that is independent of n {\displaystyle n} ; this number k ...

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The oldest method for computing the number of real roots, and the number of roots in an interval results from Sturm's theorem, but the methods based on Descartes' rule of signs and its extensions—Budan's and Vincent's theorems—are generally more efficient. For root finding, all proceed by reducing the size of the intervals in which roots ...

  8. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...