Search results
Results From The WOW.Com Content Network
Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo m is denoted a ≡ b (mod m). The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b).
The prototypical example of a congruence relation is congruence modulo on the set of integers. For a given positive integer n {\displaystyle n} , two integers a {\displaystyle a} and b {\displaystyle b} are called congruent modulo n {\displaystyle n} , written
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
For example, in modular arithmetic, for every integer m greater than 1, the congruence modulo m is an equivalence relation on the integers, for which two integers a and b are equivalent—in this case, one says congruent—if m divides ; this is denoted ().
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .
Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
The group Λ consists of all modular transformations for which a and d are odd and b and c are even. Another important family of congruence subgroups are the modular group Γ 0 (N) defined as the set of all modular transformations for which c ≡ 0 (mod N), or equivalently, as the subgroup whose matrices become upper triangular upon reduction ...