Search results
Results From The WOW.Com Content Network
Photonic molecules are a form of matter in which photons bind together to form "molecules". [1] [2] [3] They were first predicted in 2007.Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". [4]
To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.
Because photons have zero rest mass, no wave function defined for a photon can have all the properties familiar from wave functions in non-relativistic quantum mechanics. [ f ] In order to avoid these difficulties, physicists employ the second-quantized theory of photons described below, quantum electrodynamics , in which photons are quantized ...
In 1927 Paul A. M. Dirac was able to weave the photon concept into the fabric of the new quantum mechanics and to describe the interaction of photons with matter. [1] He applied a technique which is now generally called second quantization , [ 2 ] although this term is somewhat of a misnomer for electromagnetic fields, because they are ...
Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...
Using the number density as a function of spatial coordinates, the total number of objects N in the entire volume V can be calculated as = (,,), where dV = dx dy dz is a volume element. If each object possesses the same mass m 0 , the total mass m of all the objects in the volume V can be expressed as m = ∭ V m 0 n ( x , y , z ) d V ...
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]
This fermion pair can be leptons or quarks. Thus, two-photon physics experiments can be used as ways to study the photon structure, or, somewhat metaphorically, what is "inside" the photon. The photon fluctuates into a fermion–antifermion pair. Creation of a fermion–antifermion pair through the direct two-photon interaction.