Search results
Results From The WOW.Com Content Network
In geometry, a point is an abstract idealization of an exact position, without size, in physical space, [1] or its generalization to other kinds of mathematical spaces.As zero-dimensional objects, points are usually taken to be the fundamental indivisible elements comprising the space, of which one-dimensional curves, two-dimensional surfaces, and higher-dimensional objects consist; conversely ...
Just as in chemistry, the characteristic property of a material will serve to identify a sample, or in the study of materials, structures and properties will determine characterization, in mathematics there is a continual effort to express properties that will distinguish a desired feature in a theory or system. Characterization is not unique ...
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
For example, if p is prime and q(X) is an irreducible polynomial with coefficients in the field with p elements, then the quotient ring [] / (()) is a field of characteristic p. Another example: The field C {\displaystyle \mathbb {C} } of complex numbers contains Z {\displaystyle \mathbb {Z} } , so the characteristic of C {\displaystyle \mathbb ...
A prominent example of a field is the field of rational numbers, commonly denoted , together with its usual operations of addition and multiplication. Another notion needed to define algebraic number fields is vector spaces .
Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, a problem that was stated in terms of elementary arithmetic, and remained unsolved for several centuries.
Non-Archimedean local fields of characteristic p (for p any given prime number): the field of formal Laurent series F q ((T)) over a finite field F q, where q is a power of p. In particular, of importance in number theory, classes of local fields show up as the completions of algebraic number fields with respect to their discrete valuation ...
Characteristic classes are elements of cohomology groups; [1] one can obtain integers from characteristic classes, called characteristic numbers. Some important examples of characteristic numbers are Stiefel–Whitney numbers , Chern numbers , Pontryagin numbers , and the Euler characteristic .